

Transform your monolith
into a nice SOA

application

About – me

@matgillot

– Backend developer

– Open-source enthusiast

– Enjoy
● Working
● Traveling
● Tractors

About – this presentation

● Focused on the migration of a live application

● Make your app easy to
– Work with

– Understand

– Scale

Plan

● SOA architecture

● Refactoring

● Best Practices

● Migration

SOA Architecture

● Concepts

● Principles

● SOA in your
application

SOA - Concepts

Business value Technical strategy

Strategic goals Project-specific benefits

Inter-operability Custom integration

Shared services Specific-purpose implementations

Flexibility Optimization

Evolutionary refinement Initial perfection

SOA - Principles

● Agnostic services

– Abstraction: services act as black boxes
– Statelessness: return the requested value or give an

exception
– Composability: services can be used to compose other

services

– Reusability: logic is divided into various services, to
promote reuse of code

– Encapsulation: services which were not initially planned
under SOA, may get encapsulated or become a part of
SOA

Encapsulation

SOA in your application - kill the
monolith !

● Break coupling!
● Use dependency injection
● Composability: Play Lego (TM)

Database service Authentication
service Caching service

ACL service Logger service Event dispatcher
service

Refactoring

● Concept
● Daily work

– TDD refactoring

● Optimistic refactoring
– Litter-Pickup Refactoring

– Comprehension Refactoring

● Before starting a development
– Preparatory refactoring

● Large-scale restructuring
tasks
– Planned Refactoring

– Long-Term Refactoring

Refactoring : what is it ?

“A change made to the internal structure of
software to make it easier to understand and

cheaper to modify without changing its observable
behavior.”

Martin Fowler

Refactoring – two hats

Daily Work - TDD refactoring

● Write failing test

● Make test pass

● Refactor

describe the expected behaviors of your
functionality using assertions

focus on adding the new functionality, without
thinking about how this functionality should be best
structured.

Concentrate on good design, while
working in the safer refactoring mode
of small steps on a green test base

Optimistic refactoring - Litter-Pickup
Refactoring

● Boy scout rule

● Cleaning up code as we work in it

always leave the code better
than when you found it.

make things quicker for us the
next time we need to work with it

Optimistic refactoring -
Comprehension refactoring

● Implement clear code is hard

● Build your understanding of the problem

● Move it into the code

often you can only tell how to make it
clear when someone else looks at it, or
you come back to it at a later date.

whenever you have to figure out what
code is doing, you are building some
understanding in your head.

so nobody has to build it from scratch in
their head again

Optimistic Refactoring

● Good move if
– simple fix

– will make it easier to add the feature you're working on

● Requirements
– tested and stable codebase

– require less than [SUBJECTIVE_VALUE] % of the time
to develop the feature

Preparatory refactoring

● Refactor codebase before adding a new functionality

Good move if
– Overall change is faster than implementation on entire

codebase

– Codebase will be used in many places

– Codebase is fully tested (if not, split in two tasks)

Large-scale - Planned Refactoring

● Fix larger areas on problematic code

● The more you’ll work with quality approach, the
less you’ll have to do it

● If it happens often, incorporate optimistic &
planned refactoring processes in your daily
work

Large-scale - Long-Term
Refactoring

● Clearly define your needs

● Use branch by abstraction to reduce risk

● Code has to be stable at the end of every small
step

Best practices

● Decoupling
● SOLID Pattern
● Test Automation

– Unit Testing

– Functional/Integration
Testing

– End-User Testing

– Code Coverage

● Monitoring

Decoupling

● Law of Demeter

● SOLID principles

● Dependency Injection

● Events

● Event bus

Law of demeter – counter-example

Events – Be careful !

Automated testing

● Unit testing

● Integration &
functional testing

● End-user testing

● Code coverage

Unit Testing

● Test algorithms/methods individually

● Mock dependencies

● Cover all scenarios

● Don’t interact with environment

Integration & Functional Testing

● Combine units of code and test combination
functions correctly

● Test the result of an entire workflow by
providing inputs and testing outputs

● Unit test OK

● Integration tests
missing

End-User Testing

● Access the application
● Test what is displayed to end-user
● Based on scenarios
● Use test description specification language

Code coverage

● DON’T make it a target
– no correlation with code quality

– focus on risky code
● cause critical bugs
● used in many places
● tricky algorithm

– 10% coverage for 100% of scenarios is far better
than 100% coverage for 10% of scenarios

Monitoring

● Profile and monitor to identify
– Bottlenecks

– Heaviest parts of your application

– Make a distinction between I/O and processing

● Some tools
– Xhprof

– Valgrind

– Pinba

– ...

Tools

● Compatibility tests
– Concept

– Example

● Indicators
– CRAP Index

– Progression Metrics

● Monitoring

Compatibility tests - concept

● Ensure you don’t break compatibility

● Help to make the migration safe

● Short-lived tests

Compatibility test - example

Indicators – CRAP index

● Change Risk Analysis and Predictions

● based on coverage & complexity

● identify parts of your code with higher risk

Progression metrics

● Keep it (very) simple

● Make product managers happy

Monitoring

● Keep an eye on performance when you replace
a module

● Use anomaly detection and alerting to spot
regressions

Put it all together – kill the monolith !

How to spot bad code that is easy to
migrate

● Not used in too many places (easy to deploy,
reduce conflicts)

● Logic will be easy to split
● Compatibility test will be fast to implement

Steps to kill old code – easy task

● Write agnostic services, with all dependencies injected
● Write compatibility tests
● Replace old code usage by your brand new service
● Remove old code and compatibility test
● For each method migrated :

– Global complexity will decrease

– Coverage will increase

=> CRAP (risk) index naturally goes down

Steps to kill old code – complicated
task (plan A)

● Implement new agnostic services

● Write compatibility test

● Inject new services in old manager
(dependencies of the method)

● Replace smoothly in sequential small tasks

Plan A - example

Steps to kill old code – complicated
task (plan B)

● Inject old manager in your new services

● Mock methods which are dependencies of the
method to kill

● Call dependencies methods using the manager
injected

● These methods will be your next targets

Plan B - example

Keep in mind

● Small steps

– Easier to release

– Avoid regressions

● Every step should end in a stable state

– All new services have to be tested

– Your code coverage will increase naturally

● Start where it hurts !

To infinity and beyond : moving to a
microservice environment

● Initial purpose of SOA

● Small webservices,
single responsibility

● Try to keep a consistent
communication protocol
in your ecosystem

● API-first architecture

You can start within your
framework !

● A service in your dependency injection
container could become a simple wrapper to an
external micro-service

● Good way to kill your old framework by moving
parts of code to stand-alone agnostic micro-
applications

Initial State

Intermediate state

“Close to the end” state

Inter-services communication :
be careful !

Take away

There is no silver bullet !

Thank you !

Are you interested in solving similar problems?

Join our team, we’re hiring!

Resources

● https://martinfowler.com/

● http://blogs.mulesoft.com/

● http://www.artima.com/weblogs/viewpost.jsp?thread=210575

● http://www.exampler.com/testing-com/writings/coverage.pdf

● http://engineering.dailymotion.com/monitor-your-application-using-pinba/

http://blogs.mulesoft.com/

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

